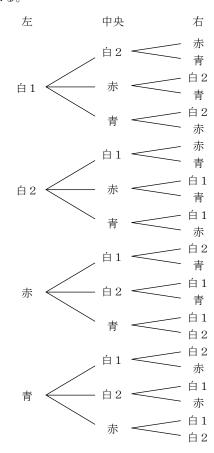
章の問題

. / - \			
1 (1)	投げた	表が出た	表が出る
	回数	回数	相対度数
	100	49	0.490
	200	101	0.505
	400	153	0.383
	800	350	0.438
	1200	502	0.418
	1600	672	0.420
	2000	839	0.420

(2) 投げた回数が多くなるにつれて、表が出る相対度数 は一定の値 0.42 に近づいていく。したがって、表が出る確率はおよそ 0.42 と考えられる。

答 およそ 0.42

2(1) 白玉を白1,白2,赤玉を赤,青玉を青として,起 こりうるすべての場合を樹形図で整理すると,次のよ うになる。



起こりうるすべての場合は24通りあり、そのどれが起こることも同様に確からしい。

このうち、左から赤玉、白玉、青玉の順に並ぶのは、

(赤, 白1, 青), (赤, 白2, 青)

の2通りである。

したがって、求める確率は、

$$\frac{2}{24} = \frac{1}{12}$$

答 $\frac{1}{19}$

(2) 赤玉と青玉が隣り合って並ぶのは,

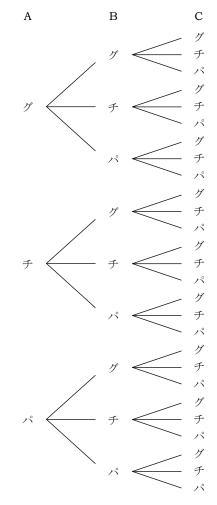
(白1, 赤, 青), (白1, 青, 赤), (白2, 赤, 青), (白2, 青, 赤), (赤, 青, 白1), (赤, 青, 白2), (青, 赤, 白1), (青, 赤, 白2)

の8通りである。

したがって, 求める確率は,

$$\frac{8}{24} = \frac{1}{3}$$
 \text{\General} \text{\General} \frac{1}{3}

3(1) グーをグ,チョキをチ,パーをパとして,起こりうるすべての場合を樹形図で整理すると,次のようになる。



起こりうるすべての場合は27通りあり、そのどれが起こることも同様に確からしい。

このうち, Aが1人だけ勝つのは,

(グ, チ, チ), (チ, パ, パ), (パ, グ, グ)

の3通りである。

したがって、求める確率は,

(2) Aが1人だけ負けるのは,

(グ, パ, パ), (チ, グ, グ), (パ, チ, チ)

の3通りである。

したがって、求める確率は,

$$\frac{3}{27} = \frac{1}{9}$$
 答 $\frac{1}{9}$

(3) 3人があいこになるのは,

(グ, グ, グ), (グ, チ, パ), (グ, パ, チ),

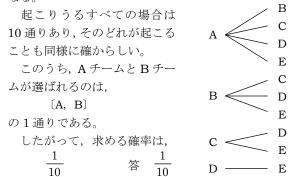
(チ, グ, パ), (チ, チ, チ), (チ, パ, グ), (パ, グ, チ), (パ, チ, グ), (パ, パ, パ)

の9通りである。

したがって、求める確率は、

$$\frac{9}{27} = \frac{1}{3}$$

4(1) すべての場合を樹形図で整理すると、右下のようになる。



(2) A チームが選ばれないのは,

の6通りである。

したがって、求める確率は、

$$\frac{6}{10} = \frac{3}{5}$$

-(解説)-----

- (1) 「A チームと B チームが選ばれること」と「B チームと A チームが選ばれること」は同じである。
- (2) 次のように求めることもできる。

A チームが選ばれる確率は,

$$\frac{4}{10} = \frac{2}{5}$$

だから, Aチームが選ばれない確率は,

$$1 - \frac{2}{5} = \frac{3}{5}$$

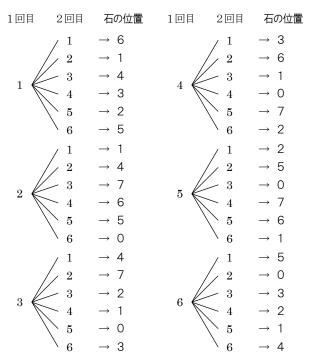
5 2個のさいころをそれぞれ A, B と区別し、白の面を白、赤の面を赤1、赤2、青の面を青1、青2、青3として、起こりうるすべての場合を表で整理すると、次のようになる。

AB	白	赤1	赤 2	青1	青 2	青3
白	(白, 白)	(白, 赤1)	(白, 赤2)	(白, 青1)	(白, 青2)	(白, 青3)
赤1	(赤1,白)	(赤1, 赤1)	(赤1, 赤2)	(赤1, 青1)	(赤1, 青2)	(赤1, 青3)
赤 2	(赤2, 白)	(赤2, 赤1)	(赤2, 赤2)	(赤2, 青1)	(赤2, 青2)	(赤2, 青3)
青1	(青1,白)	(青1, 赤1)	(青1, 赤2)	(青1, 青1)	(青1, 青2)	(青1, 青3)
青 2	(青2,白)	(青2, 赤1)	(青2, 赤2)	(青2,青1)	(青2, 青2)	(青2, 青3)
青3	(青3,白)	(青3, 赤1)	(青3, 赤2)	(青3, 青1)	(青3, 青2)	(青3, 青3)

起こりうるすべての場合は36通りあり、そのどれが起こることも同様に確からしい。

このうち、⑦の場合は1通り、②の場合は4通り、⑦の場合は9通り、②の場合は4通り、③の場合は6通り、③の場合は12通りである。

6 起こりうるすべての場合を樹形図で整理すると、次のようになる。



起こりうるすべての場合は36通りあり、そのどれが起こることも同様に確からしい。

このうち、石の位置が4になるのは、

の4通りである。

したがって, 求める確率は,

$$\frac{4}{36} = \frac{1}{9}$$
 \text{\text{\text{\text{\text{\text{\text{\text{9}}}}}}

7 正しくない。

[理由] (例) 2個のさいころの目の数の和が 2, 3,4, ……, 12になるそれぞれのことがらは、同様に確からしくないから。

-(解説)-----

たとえば、2個のさいころの目の数の和が2になる場合と3になる場合では、起こりやすさが異なる。 じゅんさんの考えでは、それらの起こりやすさが同 じ、つまり、同様に確からしいとみなしているとこ ろに誤りがある。

なお,2個のさいころの目の数の和が偶数になる 確率は,次のように求めることができる。

2個のさいころをそれぞれ A, B と区別し, 起こりうるすべての場合を次のように整理する。

AB	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

このとき、起こりうるすべての場合は 36 通りあり、出る目の数の和が偶数になるのは 18 通りであるから、出る目の数の和が偶数になる確率は、

$$\frac{18}{36} = \frac{1}{2}$$

である